Random Rotation Ensembles
نویسندگان
چکیده
In machine learning, ensemble methods combine the predictions of multiple base learners to construct more accurate aggregate predictions. Established supervised learning algorithms inject randomness into the construction of the individual base learners in an effort to promote diversity within the resulting ensembles. An undesirable side effect of this approach is that it generally also reduces the accuracy of the base learners. In this paper, we introduce a method that is simple to implement yet general and effective in improving ensemble diversity with only modest impact on the accuracy of the individual base learners. By randomly rotating the feature space prior to inducing the base learners, we achieve favorable aggregate predictions on standard data sets compared to state of the art ensemble methods, most notably for tree-based ensembles, which are particularly sensitive to rotation.
منابع مشابه
Investigation of Property Valuation Models Based on Decision Tree Ensembles Built over Noised Data
The ensemble machine learning methods incorporating bagging, random subspace, random forest, and rotation forest employing decision trees, i.e. Pruned Model Trees, as base learning algorithms were developed in WEKA environment. The methods were applied to the real-world regression problem of predicting the prices of residential premises based on historical data of sales/purchase transactions. T...
متن کاملAn Experimental Study on Rotation Forest Ensembles
Rotation Forest is a recently proposed method for building classifier ensembles using independently trained decision trees. It was found to be more accurate than bagging, AdaBoost and Random Forest ensembles across a collection of benchmark data sets. This paper carries out a lesion study on Rotation Forest in order to find out which of the parameters and the randomization heuristics are respon...
متن کاملRandom rotation survival forest for high dimensional censored data
Recently, rotation forest has been extended to regression and survival analysis problems. However, due to intensive computation incurred by principal component analysis, rotation forest often fails when high-dimensional or big data are confronted. In this study, we extend rotation forest to high dimensional censored time-to-event data analysis by combing random subspace, bagging and rotation fo...
متن کاملArbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary–symplectic case
Recently, the supersymmetry method was extended from Gaussian ensembles to arbitrary unitarily invariant matrix ensembles by generalizing the Hubbard–Stratonovich transformation. Here, we complete this extension by including arbitrary orthogonally and unitary–symplectically invariant matrix ensembles. The results are equivalent to, but the approach is different from the superbosonization formul...
متن کاملRotation-based ensembles of RBF networks
Ensemble methods allow to improve the accuracy of classification methods. This work considers the application of one of these methods, named Rotation-based, when the classifiers to combine are RBF Networks. This ensemble method, for each member of the ensemble, transforms the data set using a pseudo-random rotation of the axis. Then the classifier is constructed using this rotation data. The re...
متن کاملRotation-Based Ensembles
A new method for ensemble generation is presented. It is based on grouping the attributes in di erent subgroups, and to apply, for each group, an axis rotation, using Principal Component Analysis. If the used method for the induction of the classi ers is not invariant to rotations in the data set, the generated classi er can be very different. Hence, once of the objectives aimed when generating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 17 شماره
صفحات -
تاریخ انتشار 2016